#!/usr/bin/env python
"""
This program assists with cutting down large images into square tiles. It can
take an image of arbitrary size and create tiles of any size.
python tilemaker.py -s256 -Q9 -t"tile-%d-%d-%d.png" -bFFFFFF -v canvas.png
Copyright, 2005-2006: Michal Migurski, Serge Wroclawski
License: Apache 2.0
"""
import math
from os.path import split, splitext
from PIL import Image
chatty_default = False
background_default = "FFFFFF"
efficient_default = True
scaling_filter = Image.BICUBIC
from sys import exit
def main():
"""Main method"""
from optparse import OptionParser
parser = OptionParser(usage = "usage: %prog [options] filename")
# Now, Dan wants tile height and width.
parser.add_option('-s', '--tile-size', dest = "size", type="int",
default=512, help = 'The tile height/width')
parser.add_option('-t', '--template', dest = "template",
default = None,
help = "Template filename pattern")
parser.add_option('-v', '--verbose', dest = "verbosity",
action = "store_true", default = False,
help = "Increase verbosity")
parser.add_option('-Q', '--quality', dest="quality", type="int",
help = 'Set the quality level of the image')
parser.add_option('-b', '--background', dest="background",
help = 'Set the background color')
# Location based arguments are always a pain
(options, args) = parser.parse_args()
if len(args) != 1:
parser.error("incorrect number of arguments")
filename = args[0]
if not options.template:
fname, extension = splitext(split(filename)[1])
options.template = fname + '-%d-%d-%d' + extension
if not options.background:
options.background = background_default
verbosity = options.verbosity
size = options.size
quality = options.quality
template = options.template
background = options.background
# Split the image up into "squares"
img = prepare(filename, bgcolor = background, chatty = verbosity)
subdivide(img, size = (size, size),
quality = quality, filename = template, chatty = verbosity)
def prepare(filename, bgcolor = background_default, chatty = chatty_default):
"""
Prepare a large image for tiling.
Load an image from a file. Resize the image so that it is square,
with dimensions that are an even power of two in length (e.g. 512,
1024, 2048, ...). Then, return it.
"""
src = Image.open(filename)
if chatty:
print "original size: %s" % str(src.size)
full_size = (1, 1)
while full_size[0] < src.size[0] or full_size[1] < src.size[1]:
full_size = (full_size[0] * 2, full_size[1] * 2)
img = Image.new('RGBA', full_size)
img.paste("#" + bgcolor)
src.thumbnail(full_size, scaling_filter)
img.paste(src, (int((full_size[0] - src.size[0]) / 2),
int((full_size[1] - src.size[1]) / 2)))
if chatty:
print "full size: %s" % str(full_size)
return img
def tile(im, level, quadrant=(0, 0), size=(512, 512),
efficient=efficient_default, chatty=chatty_default):
"""
Extract a single tile from a larger image.
Given an image, a zoom level (int), a quadrant (column, row tuple;
ints), and an output size, crop and size a portion of the larger
image. If the given zoom level would result in scaling the image up,
throw an error - no need to create information where none exists.
"""
scale = int(math.pow(2, level))
if efficient:
#efficient: crop out the area of interest first, then scale and copy it
inverse_size = (float(im.size[0]) / float(size[0] * scale),
float(im.size[1]) / float(size[1] * scale))
top_left = (int(quadrant[0] * size[0] * inverse_size[0]),
int(quadrant[1] * size[1] * inverse_size[1]))
bottom_right = (int(top_left[0] + (size[0] * inverse_size[0])),
int(top_left[1] + (size[1] * inverse_size[1])))
if inverse_size[0] < 1.0 or inverse_size[1] < 1.0:
raise Exception('Requested zoom level (%d) is too high' % level)
if chatty:
print "crop(%s).resize(%s)" % (str(top_left + bottom_right),
str(size))
zoomed = im.crop(top_left + bottom_right).resize(size, scaling_filter).copy()
return zoomed
else:
# inefficient: copy the whole image, scale it and then crop
# out the area of interest
new_size = (size[0] * scale, size[1] * scale)
top_left = (quadrant[0] * size[0], quadrant[1] * size[1])
bottom_right = (top_left[0] + size[0], top_left[1] + size[1])
if new_size[0] > im.size[0] or new_size[1] > im.size[1]:
raise Exception('Requested zoom level (%d) is too high' % level)
if chatty:
print "resize(%s).crop(%s)" % (str(new_size),
str(top_left + bottom_right))
zoomed = im.copy().resize(new_size, scaling_filter).crop(top_left + bottom_right).copy()
return zoomed
def subdivide(img, level=0, quadrant=(0, 0), size=(512, 512),
filename='tile-%d-%d-%d.jpg',
quality = None, chatty = chatty_default):
"""
Recursively subdivide a large image into small tiles.
Given an image, a zoom level (int), a quadrant (column, row tuple;
ints), and an output size, cut the image into even quarters and
recursively subdivide each, then generate a combined tile from the
resulting subdivisions. If further subdivision would result in
scaling the image up, use tile() to turn the image itself into a
tile.
"""
if img.size[0] <= size[0] * math.pow(2, level):
# looks like we've reached the bottom - the image can't be
# subdivided further. # extract a tile from the passed image.
out_img = tile(img, level, quadrant=quadrant, size=size)
out_img.save(filename % (level, quadrant[0], quadrant[1]))
if chatty:
print '.', ' ' * level, filename % (level, quadrant[0], quadrant[1])
return out_img
# haven't reach the bottom.
# subdivide deeper, construct the current image out of deeper images.
out_img = Image.new('RGBA', (size[0] * 2, size[1] * 2))
out_img.paste(subdivide(img = img,
level = (level + 1),
quadrant=((quadrant[0] * 2) + 0,
(quadrant[1] * 2) + 0),
size = size,
filename=filename, chatty=chatty), (0,0))
out_img.paste(subdivide(img = img,
level=(level + 1),
quadrant=((quadrant[0] * 2) + 0,
(quadrant[1] * 2) + 1),
size = size,
filename=filename, chatty=chatty), (0,size[1]))
out_img.paste(subdivide(img = img,
level=(level + 1),
quadrant=((quadrant[0] * 2) + 1,
(quadrant[1] * 2) + 0),
size = size,
filename=filename, chatty=chatty), (size[0], 0))
out_img.paste(subdivide(img,
level=(level + 1),
quadrant=((quadrant[0] * 2) + 1,
(quadrant[1] * 2) + 1),
size = size,
filename=filename, chatty=chatty), (size[0], size[1]))
out_img = out_img.resize(size, scaling_filter)
# In the future, we may want to verify the quality. Right now we let
# the underlying code handle bad values (other than a non-int)
if not quality:
out_img.save(filename % (level, quadrant[0], quadrant[1]))
else:
out_img.save(filename % (level, quadrant[0], quadrant[1]),
quality=quality)
if chatty:
print '-', ' ' * level, filename % (level, quadrant[0], quadrant[1])
return out_img
if __name__ == '__main__':
exit(main())